Monotone matrix functions and analytic continuation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic continuation of multiple Hurwitz zeta functions

We use a variant of a method of Goncharov, Kontsevich, and Zhao [Go2, Z] to meromorphically continue the multiple Hurwitz zeta function ζd(s; θ) = ∑ 0<n1<···<nd (n1 + θ1) −s1 · · · (nd + θd)d , θk ∈ [0, 1), to C, to locate the hyperplanes containing its possible poles, and to compute the residues at the poles. We explain how to use the residues to locate trivial zeros of ζd(s; θ).

متن کامل

Analytic Continuation of Multiple Zeta Functions

In this paper we shall define the analytic continuation of the multiple (Euler-Riemann-Zagier) zeta functions of depth d: ζ(s1, . . . , sd) := ∑ 0 1 and ∑d j=1 Re (sj) > d. We shall also study their behavior near the poles and pose some open problems concerning their zeros and functional equations at the end.

متن کامل

Monotone thematic factorizations of matrix functions

We continue the study of the so-called thematic factorizations of admissible very badly approximable matrix functions. These factorizations were introduced by V.V. Peller and N.J. Young for studying superoptimal approximation by bounded analytic matrix functions. Even though thematic indices associated with a thematic factorization of an admissible very badly approximable matrix function are no...

متن کامل

Analytic Continuation of Massless Two-Loop Four-Point Functions

We describe the analytic continuation of two-loop four-point functions with one off-shell external leg and internal massless propagators from the Euclidean region of space-like 1→ 3 decay to Minkowskian regions relevant to all 1→ 3 and 2→ 2 reactions with one space-like or time-like off-shell external leg. Our results can be used to derive two-loop master integrals and unrenormalized matrix ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1976

ISSN: 0001-8708

DOI: 10.1016/0001-8708(76)90031-1